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A “Simple” Collective “Play”

Goal of play:

• Each one of us chooses a number (Participant i chooses x0i )

(Example: Riccardo is Participant 1 and chooses x01 = 25)

• Compute the average of all our numbers

xavg =
x01 + x02 + . . .+ x0participants

number of participants
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Goal of play:

• Each one of us chooses a number (Participant i chooses x0i )
(Example: Riccardo is Participant 1 and chooses x01 = 25)

• Compute the average of all our numbers

xavg =
x01 + x02 + . . .+ x0participants

number of participants

Rules of play:

• Each one of us talks only with some “neighbors”
(some participants you know)

• You update your guess of xavg

(Participant i updates xti. At time 0 start with x0i )

• You can exchange your guess xti only with your neighbors.

i

Tizio

Caio Sempronio
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A “Simple” Collective “Play”

Goal of play:

• Each one of us chooses a number (Participant i chooses x0i )
(Example: Riccardo is Participant 1 and chooses x01 = 25)

• Compute the average of all our numbers

xavg =
x01 + x02 + . . .+ x0participants

number of participants

Idea: Suppose Riccardo (Participant 1) has 3 neighbors (Tizio, Caio, Sempronio)

• Collect from them their current guess xtTizio, xtCaio, xtSempronio

• Average your guess and the collected ones

xt+1
Riccardo =

xtRiccardo + xtTizio + xtCaio + xtSempronio

4

• keep doing that!

Riccardo

Tizio

Caio Sempronio
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Distributed Average Consensus in Complex Networks

Group of N individuals, with xti being the opinion of individual i at time t.

Opinions are updated according to

xt+1
i =

N∑
j=1

aijx
t
j

with aij ≥ 0 and
∑N

j=1 aij = 1.
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• Do individual opinions converge to a common value (“reach consensus”)? Average?

• Under which interaction topology? Do they need to interact synchronously?

• What if there are stubborn individuals (“influencers”)?

• What about more complex (nonlinear) dynamics?
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Distributed robot coordination

Team of N (mobile) robots aiming at executing complex tasks

Basic tasks

rendezvous, containment

formation, flocking, coverage

Complex tasks

pickup & delivery

surveillance, patrolling, exploration
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Distributed robot coordination

Team of N (mobile) robots aiming at executing complex tasks

Basic tasks

rendezvous, containment

formation, flocking, coverage

Complex tasks

pickup & delivery

surveillance, patrolling, exploration

“Simulator (digital twins)” “Experimental platform”
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Tumor growth modeling via evolutionary dynamics

• Model tumor cells (osteosarcoma) with evolutionary dynamics

• Predict response to therapies (doxorubicin, cisplatin)

• Tumor cells adapt to hostile environment in order to survive
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Tumor growth modeling via evolutionary dynamics

• Model tumor cells (osteosarcoma) with evolutionary dynamics

• Predict response to therapies (doxorubicin, cisplatin)

• Tumor cells adapt to hostile environment in order to survive

Evolutionary dynamics (single habitat)



ẋ = xG(`, s1, s2, x, c1, c2)

˙̀ = γ
∂G(q, v1, v2, w, c1, c2)

∂q

ṡ1 = γ
∂G(q, v1, v2, w, c1, c2)

∂v1

ṡ2 = γ
∂G(q, v1, v2, w, c1, c2)

∂v2
ċ1 = −z1c1 + u1

ċ2 = −z2c2 + u2

Experiment (at IOR)

drug concentration

Experiment courtesy of N. Baldini, S. Avnet, G. di Pompo, T. Fischetti
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Tumor growth modeling via evolutionary dynamics

• Model tumor cells (osteosarcoma) with evolutionary dynamics

• Predict response to therapies (doxorubicin, cisplatin)

• Tumor cells adapt to hostile environment in order to survive

Multi-habitat models for more realistic tumor structures

Combine model-based and AI-trained dynamics
for more precise predictions

Example: 4 habitats

ẋi = fi(xNi
, ui)︸ ︷︷ ︸

evolutionary model

+ gi(xNi
, ui)︸ ︷︷ ︸

learned

neutral
slightly
acid

acid
very
acid

tumor edge tumor core
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Distributed Optimization

Optimization

min
x

f(x)

subj.to x ∈ X

Network

Problem data is spatially distributed and private

Exchange computation rather than data
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Distributed Machine Learning: Data Regression

Example: distributed regression

min
x

N∑
i=1

‖bi −Dix‖2

x?

i

bi, Di
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Distributed Machine Learning: Data Regression

Example: distributed regression

min
x

N∑
i=1

‖bi −Dix‖2

Paradigm

• local private data (bi, Di)

• cooperate to learn from all data

x?

i

bi, Di
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Distributed Machine Learning: Training of Neural Networks

General optimization set-up embraces also training of neural networks

min
x

N∑
i=1

fi(x)

Paradigm

• dataset split among processors

• cooperate to train common neural network

D1

D2

...
DN

D = D1 ∪ · · · ∪ DN
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Distributed Machine Learning: Training of Neural Networks

General optimization set-up embraces also training of neural networks

min
x

N∑
i=1

fi(x)

Paradigm

• dataset split among processors

• cooperate to train common neural network

u1
i

u2
i

u3
i

σ(·)

σ(·)

σ(·)

σ(·)

σ(·) y

Hidden
layer

Input
layer

Output
layer

Common model for D = D1 ∪ · · · ∪ DN
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In-Network Optimization

min
x

N∑
i=1

fi(x)

N∑
i=1

fi(x), x ∈ R2

x?

xt
i

xt
j

j

i

fj

fi

• N agents communicate over graph G
• agent i knows fi only

• xt
i solution estimate of i
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In-Network Optimization

min
x

N∑
i=1

fi(x)

N∑
i=1

fi(x), x ∈ R2

x?

xt
i

xt
jagent 1 estimate

xt
1

agent N estimate
xt
N

optimal solution
x?

t→∞
consensus
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DISROPT: A Python Package for Distributed Optimization

DISROPT

Toolbox for distributed optimization in

developed by OPT4SMART group

https://disropt.github.io/disropt/

Grid computing

High-performance parallel computing units

Model unreliable real networks
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Federated and Distributed Learning from Big-data in Healthcare

Automated decision support systems for healthcare

Collective learning from private big-data databases

Goal: privacy of institutional data

share computation instead of data

Localization of diseases

Personalized treatments

Patient outcome predictions
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OPT4SMART Project

Distributed Optimization Methods for Smart Cyber-Physical Networks

Methodological framework for distributed optimization

Numerical tools for machine learning and control

Experimental testbed and toolbox

opt4smart.dei.unibo.it

OPT4SMART

OPT4SMART
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Some hints for discussion

• Complex networks theory, large-scale optimization, distributed computing

• In-silico models for complex biological systems

• Distributed federated AI in healthcare (private data & ensemble knowledge)
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Some hints for discussion

• Complex networks theory, large-scale optimization, distributed computing

• In-silico models for complex biological systems

• Distributed federated AI in healthcare (private data & ensemble knowledge)

Will doctors be AIs with a human touch?

Better... “Human Doctors with an AI touch”!
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